# **OCT** Angiography



### OAO 2017 Annual Symposium

KEYVAN KOUSHAN MD FRCSC DABO TORONTO RETINA INSTITUTE MISSISSAUGA RETINA INSTITUTE MT. SINAI HOSPITAL UNIVERSITY OF TORONTO

SPECIAL THANKS TO DR. DAVID CHOW







1



Advisory board: Alcon, Novartis, Bayer

Research grant: Bayer

2

# **OCT ANGIOGRAPHY**

### NON-INVASIVE MICROVASCULAR ENHANCED IMAGING TECHNOLOGY



Intrinsic motion of RBC's in the vessels imaged in space over time

Functional assessment of vasculature

En Face projections used to view

NO CONTRAST MEDIUM injected

3D depth resolved images

Motion Contrast used to image the flow in retinal vasculature

SSADA (Split Spectrum Amplitude Decorrelation Angiography) algorithm

Spectral Domain OCT system

En Face 3d Visualization

Motion Correction technology

3

# **OCT ANGIOGRAPHY**

# PRINCIPLES OF OCT ANGIOGRAPHY

VISUALIZING FLOW THROUGH MOTION CONTRAST

Flowing water can be distinguished from a static background by comparing sequential video frames to highlight motion

MOTION CONTRAST IS SIMILARLY USED IN OCT ANGIOGRAPHY TO DISTINGUISH BLOOD FLOW IN THE VESSEL FROM STATIC TISSUE











# OCT ANGIOGRAPHY EN FACE VISUALIZATION - SEGMENTATION OF CUBE CAN BE AUTOMATED OR MANUAL ADJUSTED! Superficial capillary Deep capillary Deep capillary Choriocapillary Choriocapillary Choriocapillary

EN FACE VISUALIZATION - AUTO SEGMENTATION SETTINGS

Superficial Vascular Plexus in Angioflow Normal Eye

SUPERFICIAL RETINAL VASCULAR PLEXUS

CONSISTENT WITH OUR TYPICAL VIEW ON FLUORESCEIN ANGIOGRAPHY

DIABETIC RETINOPATHY, RETINAL ARTERY AND VEIN OCCLUSIONS

Angioflow Superficial vascular plexus

10

# OCT ANGIOGRAPHY

9

EN FACE VISUALIZATION - AUTO SEGMENTATION SETTINGS

# DEEP RETINAL VASCULAR PLEXUS

BRAND NEW AREA OF IMAGING

TRADITIONAL FA SHOWED SMUDGY LEAKAGE BUT NO DETAILS

AFFECTED IN MANY CONDITIONS BUT MAY BE PRIMARY SITE OF PATHOLOGY IN MACTEL OR RAP

# Deep Capillary Plexus in Angioflow Normal Eye



| Default settings | Upper border    | Lower border    | Total thickness |
|------------------|-----------------|-----------------|-----------------|
| Deep             | 15 µm below IPL | 70 μm below IPL | 55 µm           |

# **OCT ANGIOGRAPHY**

EN FACE VISUALIZATION - AUTO SEGMENTATION SETTINGS

### **OUTER RETINA**

BRAND NEW AREA OF IMAGING

CHOSEN TO LOOK AT SPECIFICALLY AS IT IS AVASCULAR IN NORMAL HUMANS

VASCULARIZATION IS ALWAYS PATHOLOGY!

WILL BE USEFUL TO SPECIFICALLY LOOK FOR CNVM ABOVE THE RPE, RAP LESIONS, ETC

### Outer Retina in Angioflow Normal Eye

This outer retina area does not have vessel blood flow in normal eye and the Angioflow image shows no flow signal.



other backers type

Color backers type

Find and count

Backers

Find and count

Backers

Bac

Outer retina (curly irackets)

| Default settings | Upper border    | Lower border           | Totalthickness |
|------------------|-----------------|------------------------|----------------|
| Outer Retina     | 70 µm below IPL | 30 µm below<br>RPE ref | Vary           |



OCT ANGIOGRAPHY

EN FACE VISUALIZATION - AUTO SEGMENTATION SETTINGS
OPTIC DISK

**VITREOUS** 

RADIAL
PERIPAPILLARY
CAPILLARIES

SUPERFICIAL RETINAL VASCULAR PLEXUS

DEEP RETINAL VASCULAR PLEXUS



13

\_\_\_\_\_

# OCT ANGIOGRAPHY

ANGIOFLOW IMAGE: FIELD SIZE 8-6-3 MM WITH ANGIOVUE





14

























# Summary

OCTA uses multiple OCT B scans to deduce movement of RBCs in blood vessels.

Algorithms such as SSADA improve image quality.

en face technology allows segmentation of superficial retinal vessels, deep retinal vessels, outer retina, and choriocapillaris.

OCTA allows visualization of PP vessels: implications for glaucoma management?

Strengths: detection of CNV, mac ischemia, telangiectasia

Drawbacks: prone to errors, lack of leakage info, limited to poster pole